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Abstract 

One major disadvantage of multispectral imaging is the 
amount of data that needs to be stored for each 
multispectral image. In the past, several authors have 
proposed compression schemes to overcome this 
disadvantage. Most of these papers dealt with compression 
either in the spectral or in the spatial realm only, although 
some authors proposed to divide the data into luminance 
and color components and to subsample the latter, resulting 
in a combined method. 

Unfortunately, using multispectral imaging the 
luminance component depends on the illuminant used 
during the reconstruction of the color. Using a narrowband 
illuminant every single wavelength could correspond to the 
luminance information. 

This paper proposes a method that overcomes this 
difficulty by using a more basic approach. The reason, why 
it is possible to subsample the color channels in 
conventional color imaging is the dependence of the MTF 
of the human eye on the wavelength of the observed light. 
Therefore, it is possible to subsample each spectral band 
separately (yielding spatial compression). Furthermore, a 
spectral compression method is proposed, that is 
compatible to the spatial compression, resulting in a 
method that combines spatial and spectral compression of 
the multispectral image. 

Finally, the compatibility to conventional imaging will 
be addressed and it will be shown, that the new method 
allows achieving limited compatibility. 

Introduction  

These days, most imaging is metameric. Using this kind of 
imaging, the spectral information of an original image is 
reduced to tristimulus information, which is used in turn to 
produce a copy of the original image. This approach has 
many drawbacks,1 and it is extremely difficult to obtain a 
good copy, especially, if the copy is reproduced using a 
technology different from the original image or if the 
viewing conditions are not specified precisely.  

Multispectral imaging has been proposed as an 
alternative approach. Using this approach, as much of the 
spectral information of the original image as possible is 
captured and used for the reproduction. Using this 
approach a precise copy of the original can be achieved 

comparatively easy. However, the amount of data 
necessary for an multispectral image is staggering: for each 
pixel of the image a complete spectrum needs to be 
recorded. It is easy to see, that this is a major drawback to 
multispectral imaging. 

In the past, a number of papers dealing with the 
compression of multispectral images have been published. 
An overview can be found in Ref. [2]. Most of the previous 
papers dealt with spectral compression only, assuming that 
spatial compression can be applied to each channel after 
spectral compression.  

Conventional Approaches 

One of the most effective methods for compressing 
conventional images is to split the color information into 
lightness information and color information, and to 
subsample the color information. Some authors suggest a 
similar approach to multispectral information. However, in 
the case of multispectral images, it is generally not known, 
which information corresponds to the lightness 
information, as this is dependent on both the observer and 
the output illuminant. It is conceivable that the output 
illuminant consists of only a single wavelength and 
consequently the lightness information cannot be divided 
from the color information without making further 
assumptions. 

There are two reasons why this approach is so helpful 
in conventional imaging. The first is the MTF of the 
human eye, which is dependent on the wavelength. The 
second (and more important) reason is the way the human 
brain deals with color information. 

In multispectral imaging, we can only put the first 
effect to good use by subsampling the original image at 
each wavelength. The second effect cannot be used with a 
simple method. Therefore, this paper proposes a 
compression method that is quite different from the earlier 
approaches. It is based on an image formation model that is 
explained in the next chapter. 

Image Formation Model 

A natural scene consists of a configuration of objects. Each 
of these objects has a spectral reflectance, which may be 
different at different points of the object (texture 
r(x,y,z,λ)). Usually the color (and spectrum) of a texture 
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changes only slowly between two points of an object. 
Otherwise it might be assumed, that the object consists of a 
number of smaller objects (e.g. some floor tiles display 
such a property). This scene is illuminated by one or more 
light sources. Each light source emits light with a specific 
spectral power distribution In(λ). This light is reflected by 
the objects and captured within the image plane.  

Generally, the light intensity and the power 
distribution of the light changes for each point of each 
object I(x,y,z, λ). However, multispectral image 
applications usually use a light source with known spectral 
power distribution, as it is desired to describe the scene as 
if it was illuminated by illuminant E. Accordingly, we can 
assume that the power distribution of the light changes 
only in intensity I(x,y,z), as we move from one point of the 
scene to the next.  

Therefore, the light that is captured in the image plan 
IP(x’,y’, λ) is dependent on the object texture, the light 
intensity and geometrical factors, which are given by the 
three-dimensional structure of the scene: 
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For most objects, the viewing angle influences mainly 
the intensity and not the spectrum of the reflected light 
(ignoring specular reflections, satin is an exception). 
Consequently, it is possible to combine the first two factors 
into a factor I’. The remaining differences can be 
accounted for by using a slightly modified texture r’(x, y, 
z, λ). Furthermore, the variables x, y, z can be described as 
functions of the image plane variables x’ and y’. 
Accordingly the equation can be simplified to: 
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Image Compression 

The basic idea behind every compression algorithm is to 
remove information from an object (image, sound file, text 
file…) that is not needed because it is either redundant 
(loss less compression) or irrelevant (lossy compression). 
In the context of this paper, only loss less compression will 
be considered (except for the optional subsampling 
mentioned above). One very commonly used group of 
methods for loss less compression is based on prediction. 
Using such a method, the data that has already been 
decompressed is used to predict the data that has yet to be 
decompressed. Consequently, only the difference between 
this prediction and the original data needs to be stored. If 
the prediction is good, the values of these differences are 
not equally distributed and an entropy encoding method 
(e.g. Huffman codes) can be used for an effective encoding 
of the difference values. As a general rule we can state: the 
better the prediction, the more efficient the compression 
scheme.  

In the following, this paper will present a prediction 
algorithm that can be used as basis for this kind of a 
compression algorithm. 

In the technical implementation of a multispectral 
image acquisition device, the image plane is usually 

divided into a regular grid of lines and columns. In the 
following a compression scheme will be assumed that 
codes the spectra point by point in the order shown in fig. 
1. For each point, the complete spectrum is encoded. This 
is different from many encoding schemes for conventional 
images. Using such a method, very often, an images is 
encoded color plane by color plane (that is first all 
information regarding red, then green than blue). Later on, 
it will be elucidated, why this is advantageous.  
 

 

 

Figure 1. Order used to encode multispectral images 

 
 
Based on this compression scheme, we notice that all 

information that is above or left of a point can be used to 
predict the spectrum of this point. In the following we will 
use only the points directly to the left and directly above 
from the point to be encoded (or decoded).  

In addition to the spatial order we also need to specify 
an order for the spectral values. The first idea would be to 
encode the values in order of increasing wavelength. As we 
will see later on, another order of the wavelength is more 
favorable.  

Using this order, first the spectral reflectance at a 
small, a large and a medium wavelength is stored. Next, 
for each of the intervals the medium wavelength is chosen. 
This is repeated until all spectral values have been 
encoded. 

For example, if a multispectral image capture device 
uses the 16 wavelength 400nm, 420nm, 440nm, …, 
700nm, the following order could be used: 440 nm 560 nm 
660 nm, 400 nm, 500 nm, 600 nm, 700 nm, 420 nm, 480 
nm, 540 nm, 580 nm, 620 nm, 680 nm, 460 nm, 520 nm, 
640 nm. 

Using such a scheme, the prediction algorithm can use 
spectral information from higher and lower wavelengths to 
predict a spectral value. Additionally, this allows to 
achieve limited compatibility with conventional imaging as 
discussed below. 

Methods of Prediction 

The prediction algorithms discussed in this paper are based 
on the image formation model that was discussed above. 
While examining the spectrum of any given point P0, we 
notice that there are two basic situations. Either the points 
left (PL) and above (PA) of this point belong to the same 
object, or one of these points belongs to a different object.  

If all three points belong to the same object, the image 
formation model discussed above requires, that the spectra 
of all three points are similar apart from a possible scaling 
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factor that is mostly dependent on scaling. Therefore, we 
should be able to achieve a good approximation of the 
given point’s spectrum by averaging the spectrum of the 
two known points and applying a factor based on shading.  

As the two known points may have different shading 
situations, the influence of shading has to be eliminated. 
This can be done by normalizing and averaging the two 
spectra r(PL,λ) und r(PA,λ). 

rn(λi) = ½ [r(PL,λi)/Σk(r(PL,λk))+ r(PA,λi)/Σk(r(PA,λk))] 

Furthermore, a shading factor for the point P0 needs to 
be estimated. This can be done by calculating the shading 
factors for the two known points and averaging.  

I’(P0)= ½ [Σk(r(PL,λk))+ Σk(r(PA,λk)] 

Of course, this is usually only a first approximation. 
However, as soon as some spectral values of the point P0 
are decoded, these values can be used for a much better 
approximation. 

So far, we only considered cases, in which there is a 
point left and above from the point P0. Obviously, this is 
not the case at the left or upper border of the image. In 
these cases there is only one known point. Here the same 
method can be applied. But the averaging of the two points 
has to be omitted. 

A different approach has to be found for the upper-
leftmost point, where there is no known point at all. In this 
case, a different prediction method needs to be used. This 
method will also be used, if not all of the three points 
belong to the same object. In these cases, only a spectral 
estimation method can be applied. Luckily, spectra are 
usually rather smooth. Therefore it is possible to use 
spectral values that have already been decoded to estimate 
the remaining values. A very basic approach is to use 
linear interpolation as shown in figure 2.  

Figures 3 and 4 demonstrate the reduction of entropy, 
that is achieved by the prediction method. Without the use 
of the prediction method (fig. 3) the code values at 480 nm 
are almost equally distributed. Using the known spectral 
values at 400nm and 560 nm the distribution of the code 
values has significantly changed and the entropy is 
reduced, resulting in a much better compression. The 
difference in entropy is even more noticeable, when 
comparing the distribution with and without prediction at 
440 nm, where the spectral values from 400 and 480 nm 
are available for the estimation method (not shown here). 

Obviously other more sophisticated methods of 
spectral estimation could be used. These methods include, 
but are not limited to, Wiener inverse, smoothing inverse, 
Viggiano weighted estimation and many other methods. In 
general the optimal spectral estimation method to be used, 
is the one, that minimized the spectral error of the 
estimation.  

Therefore, it is also possible to custom tailor the 
estimation method to the given image, as proposed in Ref. 
[3].  

As discussed, the proposed compression algorithm 
uses two completely different estimation algorithms. An 
important issue is to decide, when to use which estimation 

method. Basically, there are two different approaches to 
this question.  
 

 Known values 

Estimated 
spectrum 

Real spectrum 

 

Figure 2. Basic spectral prediction method based on linear 
interpolation 
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Figure 3. Distribution of code values without estimation method 
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Figure 4. Distribution of code values with estimation method. 
Notice the reduced entropy. 

 
First it is possible to simply try both estimation 

methods and to decide which one results in an smaller 
amount of encoded data for one given pixel. The drawback 
of this approach is, that the decoder needs to know which 
method to use. This requires an additional bit for each 
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pixel. However, it is conceivable, that this decision 
information can be effectively encoded using entropy 
encoding, because the spatial estimation will be used much 
more often than the spectral estimation method. 

The second approach is to use the encoded data to 
decide which estimation method to use. In other words, to 
use the first few (two or three) spectral values to estimate, 
which estimation method will result in the better 
compression. 

For example, if the first 3 spectral values are reduced 
by roughly 10% compared with the pixel left of the 
processed pixel and by 5% compared with the pixel above, 
it is likely, that the spectrum is basically the same and 
spatial estimation should be used for the remaining spectral 
values. If, however, two spectral values roughly stay the 
same as the spectral values of the pixel left of the 
processed pixel, and the third spectral value is reduced by 
50%, it is likely, that the new spectrum belongs to a 
different object. Therefore, spectral estimation should be 
used.  

The optimum method to estimate which estimation 
method to use, is as such dependent on the estimation 
methods used for spectral and spatial compression and the 
image to be encoded. Further research needs to be 
conducted. 

Compatibility 

One very important aspect of any multispectral imaging 
system is its compatibility with conventional imaging. 
Only if multispectral imaging fits into such a system the 
wide use of multispectral techniques will become viable. 
Otherwise, the use of multispectral imaging will be limited 
to the small number of professional applications, in which 
color precision is of utmost importance, although exact 
color information can also be helpful for other 
applications, when a pleasing color reproduction is more 
important, than a precise color reproduction.  

Compatible data formats have been discussed 
elsewhere.4 Thiese methods encode an image using a 
conventional image format (e.g. TIFF) and add additional 
information in the form of tags or headers. The previous 
approaches use exact color information with regard to a 
specified illuminant. This information is calculated from 
the multispectral information. That is why these 
approaches do not fit in well with the encoding of spectral 
values as discussed in this paper. On the other hand, taking 
a look at conventional imaging, color information usually 
is not really that precise, due to sensor metamerism and 
undefined or unknown illuminant situations.  

Therefore, does compatibility with conventional 
imaging really require optimum color values for one given 
illuminant, which usually is not used to view the image in 
practice, or is a more relaxed approach viable? 

Especially, such a relaxed approach is viable for most 
consumer application. In this case, it is possible to select 
three spectral values and to calculate approximate color 
values from the spectral values by simply applying a 
matrix transform. 

An experiment has been conducted to estimate the 
quality achievable by this approach. To this end, a set of 
spectra measured by Vrhel and co-workers5 has been used. 
This set contains 354 spectra of natural objects and paints, 
each sampled at 61 wavelength between 400 nm and 700 
nm. The set has been found to offer a very wide range of 
spectral variance and, therefore, is a good set to use, if the 
influence of spectral variability is to be estimated. 

Tristimulus values XYZ with respect to illuminant 
D65 were calculated for the 354 spectra contained in this 
set. Next, three wavelengths were chosen and for each 
spectrum the sample values at these wavelengths were 
considered. 

Consequently, for each spectrum, there are two three-
dimensional vectors, one containing the tristimulus values 
and a second containing the samples at the chosen 
wavelengths. A pseudo inverse was used to derive a 
matrix, that allows the approximation of the XYZ values 
from the sample values. Due to the nature of the pseudo 
inverse, this matrix is optimal regarding the quadratic 
deviation between the original XYZ values and those 
derived by using the matrix. 

Lab values were calculated both from the original 
XYZ values and from the XYZ values calculated by use of 
the matrix., and finally ∆E94 color errors were derived. 

This process was repeated for each of the 43680 
meaningful combinations of wavelengths (The wavelengths 
need to be different from each other and the order of 
selecting the wavelengths does not matter). 

Finally, from these combinations, the combination that 
leads to the smallest mean ∆E94 – error was chosen. The 
average error in this case was 3.58 ∆E94, while the 
maximum error was 18.53 ∆E94.  

The magnitude of this error is comparable with the 
error achieved by conventional three-channel imaging 
devices. Furthermore, this result is not optimal for several 
reasons. First, the use of XYZ errors for minimization does 
not correspond too well to the resulting ∆E94–errors. It was 
chosen for simplicity, as the calculation had to be repeated 
quite a few times. 

Second, a given image usually displays a considerably 
smaller spectral variability than the Vrhel set. Therefore, it 
is possible to custom tailor the matrix transform for each 
image, reducing the color error resulting from this 
approximation. 

Using this approach, it is possible, to encode the 
spectral image in a compatible way by storing the XYZ (or 
L*a*b*, or RGB,…) values calculated by the matrix 
transform in a conventional image format and providing 
both the transform matrix and the remaining spectral 
information separately, possible within the same file. 

Conclusions 

In this paper a new approach to the compression of 
multispectral color images has been proposed. This method 
is based on the compression of spectral channels instead of 
reducing the number of channels to be encoded. It is based 
on a prediction method, in which for each pixel of the 
image one of two possible prediction methods is chosen. 
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This choice can either be automatic or dependent on an 
additional image plane. 

Furthermore, compatibility with conventional image 
three-channel imaging has been discussed and it was 
shown, that it is possible to achieve similar color accuracy 
with this approach. In an experiment an average color error 
of 3.58 ∆E94 was achived. 
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